Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Wolfgang Kliegel, ${ }^{\text {a }}$ Lutz Preu, ${ }^{\text {a }}$ Ulf Riebe, ${ }^{\text {a }}$ Brian O. Patrick, ${ }^{\text {b }}$ Steven J. Rettig ${ }^{\text {b }}$ and James Trotter ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Institut für Pharmazeutische Chemie, Technischen Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany, and ${ }^{\text {b }}$ Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

Correspondence e-mail:
jtrt@xray4.chem.ubc.ca

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.058$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

A BONBON 6-membered ring heterocycle

2,5-Dimethyl-3,3,6,6-tetraphenyl-1,4-dioxa-2,5-diazonia-3,6diboratacyclohexane, $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, occupies a crystallographic inversion centre, and contains a six-membered BONBON heterocyclic ring, with a chair conformation and dative $\mathrm{B}-\mathrm{N}$ bonds of length 1.640 (1) \AA.

Comment

The BONBON heterocycle (I), a condensation product of N methylhydroxylamine and diphenylborinic acid, is an example of substituted aminoxyboranes, the dimeric nature of which has often been postulated for aminoxy- or iminoxyboranes [references cited in Kliegel et al. $(1992,1994)$]. A monocyclic BONBON ring was first established by an X-ray analysis of an oxime diarylborinate (Kliegel et al., 1994). The same ring system is also present in several polycyclic compounds, which have been analysed by X-ray crystallography (Rettig \& Trotter, 1983; Amt et al., 1988; Kliegel et al., 1991, 1992). Whereas in solution (${ }^{1} \mathrm{H}$ NMR) and gas phase (mass spectrum) of (I) the presence of the monomer $\mathrm{Ph}_{2} \mathrm{BONHMe}$ is indicated, the crystals contain exclusively the BONBON dimer (I).

(I)

The molecule of (I) contains a centrosymmetric sixmembered BONBON ring system, with a chair conformation [ring dihedral angles in a $\mathrm{B}-\mathrm{O}-\mathrm{N}-\mathrm{B}$ section being 61.7 (1), -67.6 (1) and $\left.61.1(1)^{\circ}\right]$, similar to that in related materials [e.g. Kliegel et al. (1994)]. The methyl substituents of the N atoms are in equatorial sites. The dative $\mathrm{B}-\mathrm{N}$ bond is (typically) fairly long $[1.640(1) \AA]$. There is no $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, presumably as a result of the steric influence of the bulky phenyl substituents, the shortest intermolecular non-hydrogen contacts being C1 $\cdots \mathrm{C} 12$ and $\mathrm{C} 13=3.46$ and 3.48 Å.

Experimental

N-Methylhydroxylamine ($0.19 \mathrm{~g}, 4 \mathrm{mmol}$) and oxybis(diphenylborane) ($0.70 \mathrm{~g}, 2 \mathrm{mmol}$) were dissolved in 10 ml of ethanol and heated at boiling temperature for several minutes. Evaporation and cooling yielded $0.64 \mathrm{~g}(76 \%)$ of colorless crystals of (I) (m.p. 441443 K). IR (KBr): $3145 \mathrm{~cm}^{-1}(\mathrm{~N}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} /$ TMS), δ (p.p.m.): 1.40-1.90 (s, broad, exchangeable, 20% of 2 H), 2.78

Received 28 August 2001
Accepted 11 September 2001
Online 20 September 2001
$\left(d, J=6 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 6.33(q, J=6 \mathrm{~Hz}$, partly exchangeable, 80% of $2 \mathrm{H}), 7.23-7.99(m, 10$ aromatic H); EI mass spectrum ($70 \mathrm{eV}, 513 \mathrm{~K}$), $m / z: 422\left(1 \%, M^{+}\right), 211\left(51 \%, \frac{1}{2} M^{+}\right), 165\left(100 \%, \mathrm{Ph}_{2} \mathrm{~B}\right), 133(28 \%$, PhBONMe), 107 (21%), 105 ($26 \%, \mathrm{PhBOH}$), 77 ($52 \%, \mathrm{C}_{6} \mathrm{H}_{5}$). Analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 73.96, H 6.70, N 6.64, B 5.12; found: $\mathrm{C} 74.03, \mathrm{H} 6.62, \mathrm{~N} 6.40$, B 4.98 . The compound gives a deepblue color reaction with diphenylcarbazone in methanolic solution, indicating the presence of a diphenylboron moiety (Neu, 1960; Friese \& Umland, 1978). Crystals suitable for X-ray analysis were obtained by very slow crystallization from ethanol.

Crystal data

```
\(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\)
\(M_{r}=422.14\)
Monoclinic, \(P 2_{1} / n\)
\(a=6.9184\) (3) A
\(b=8.8703(3) \AA\)
\(c=18.7337\) (9) \(\AA\)
\(\beta=95.444\) (3) \({ }^{\circ}\)
\(V=1144.47(8) \AA^{3}\)
\(Z=2\)
```

$$
\begin{aligned}
& D_{x}=1.225 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6804 \\
& \quad \text { reflections } \\
& \theta=3.2-27.9^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.50 \times 0.30 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku/ADSC CCD diffractometer
Area detector scans
Absorption correction: multi-scan ($d^{*} T R E K$; Molecular Structure
Corporation, 1996-1998)
$T_{\text {min }}=0.96, T_{\text {max }}=0.98$
9941 measured reflections
2514 independent reflections
2059 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=27.9^{\circ}$
$h=-8 \rightarrow 7$
$k=-10 \rightarrow 10$
$l=-23 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.058$
$S=1.91$
2362 reflections
149 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)\right]$
$(\Delta / \sigma)_{\max }=0.005$
$\Delta \rho_{\max }=0.32 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{\mathrm{max}}{ }^{-3}$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-N1	1.436 (1)	C5-C6	1.385 (2)
O1-B1	1.491 (1)	C6-C7	1.391 (2)
$\mathrm{N} 1-\mathrm{C} 1$	1.479 (1)	C8-C9	1.400 (2)
$\mathrm{N} 1-\mathrm{B} 1^{\text {i }}$	1.640 (1)	C8-C13	1.397 (1)
C2-C3	1.400 (1)	C8-B1	1.609 (1)
C2-C7	1.395 (2)	C9-C10	1.391 (2)
C2-B1	1.616 (1)	C10-C11	1.384 (2)
C3-C4	1.393 (2)	C11-C12	1.384 (2)
C4-C5	1.372 (2)	C12-C13	1.391 (1)
N1-O1-B1	111.78 (6)	C9-C8-B1	120.25 (9)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	106.39 (7)	C13-C8-B1	122.68 (9)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{B} 1^{\text {i }}$	110.95 (7)	C8-C9-C10	121.4 (1)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{B} 1^{\text {i }}$	122.01 (7)	C9-C10-C11	120.2 (1)
C3-C2-C7	116.4 (1)	C10-C11-C12	119.6 (1)
C3-C2-B1	117.52 (9)	C11-C12-C13	119.9 (1)
C7-C2-B1	126.01 (9)	C8-C13-C12	121.8 (1)
C2-C3-C4	121.8 (1)	$\mathrm{O} 1-\mathrm{B} 1-\mathrm{N} 1^{\text {i }}$	101.40 (7)
C3-C4-C5	120.4 (1)	O1-B1-C2	111.58 (8)
C4-C5-C6	119.3 (1)	O1-B1-C8	106.50 (7)
C5-C6-C7	120.1 (1)	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{B} 1-\mathrm{C} 2$	113.50 (8)
C2-C7-C6	122.0 (1)	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{B} 1-\mathrm{C} 8$	106.21 (7)
C9-C8-C13	117.08 (9)	C2-B1-C8	116.34 (8)

Symmetry code: (i) $1-x, 1-y,-z$.

Figure 1
View of the title molecule (50% probability ellipsoids).
The H1 atom was refined isotropically, while all other H atoms were refined as riding on their attached atoms.

Data collection: $d^{*} T R E K$ (Molecular Structure Corporation, 1996-1998); cell refinement: $d^{*} T R E K$; data reduction: $d^{*} T R E K$; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1992-1997); software used to prepare material for publication: TEXSAN.

We thank the Natural Sciences and Engineering Research Council of Canada and the Fonds der Chemische Industrie, Frankfurt am Main, for financial support.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Amt, H., Kliegel, W., Rettig, S. J. \& Trotter, J. (1988). Can. J. Chem. 66, 11171122.

Friese, B. \& Umland, F. (1978). Anal. Chim. Acta, 96, 303-310.
Kliegel, W., Lubkowitz, G., Rettig, S. J. \& Trotter, J. (1992). Can. J. Chem. 70, 2809-2817.
Kliegel, W., Nanninga, D., Riebe, U., Rettig, S. J. \& Trotter, J. (1994). Can. J. Chem. 72, 1735-1740.
Kliegel, W., Riebe, U., Rettig, S. J. \& Trotter, J. (1991). Can. J. Chem. 69, 12221226.

Molecular Structure Corporation (1996-1998). $d^{*} T R E K$. Version 4.4. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992-1997). TEXSAN. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Neu, R. (1960). Z. Anal. Chem. 176, 343-346.
Rettig, S. J. \& Trotter, J. (1983). Can. J. Chem. 61, 206-210.

